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Abstract

In this paper it is shown that array technology is an essential tool for the quantitative analysis of bending wave fields in

elastic, solid constructions. The advantages can be compared with those of array-based acoustic wave field analysis in free

air as well as in enclosed spaces. In contrast to acoustic waves, bending waves are highly dispersive, i.e., their propagation

velocity depends strongly on frequency. A convolution operation is introduced as a preprocessing step, removing the

dispersion from the bending waves, such that their propagation properties become highly similar to that of acoustic waves.

After this transformation, multidimensional acoustic wave field analysis methods can be successfully applied to bending

wave fields, using the large technology portfolio in acoustic imaging. The new analysis method is applied to simulated

bending wave fields and to real measurements on a rectangular steel plate. The proposed method is demonstrated on

bending wave fields, but it can be applied to any type of dispersive wave phenomenon.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the context of sound radiation by vibrating structures and sound transmission through partition walls,
bending waves play a dominant role since their displacements are perpendicular to the construction such that
they most efficiently couple to the acoustic field in the surrounding air. A widely used concept to describe, in
more complex configurations as ships or buildings, the energy exchange between vibrating elements and air
and the conversion between different wave types is the statistical energy analysis (SEA) model [1]. The model
assumes that all relevant wave fields have a diffuse character, which is often doubtful in practice. And even if
this assumption holds, the model describes the phenomena only in a statistical sense being unable to take the
influence of local inhomogeneities into account. Therefore, it is desired to have, in addition to SEA-based
information, more local information on the behavior of bending waves. A direct way to obtain more physical
insight in the matter is to perform and analyze suitable measurements on representative structures. Time
domain measurements on bars where the dispersive character of bending waves becomes evident have been
reported already in the 1970s by Holmes [2]. Since then, many measurements on structures have been done
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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using impulsive impact source signals, in order to determine material properties such as damping (e.g. Ref. [3])
or to investigate the relation between vibration and sound radiation (e.g. Ref. [4]). In most applications,
measurements were done on a few ‘representative’ positions. This way, distributed local information is
obtained which can be processed in a statistical manner. This means that a deterministic approach is lacking
until today.

In earlier papers it has been shown that application of array technology is a powerful tool for deter-
ministic analysis of sound fields in enclosed spaces [5] and in outdoor situations [6]. Fig. 1 shows the multi-
channel impulse response of a rectangular lecture room, measured every 5 cm along a linear array of
microphone positions, half-way the hall over its full-width with the source front center. The results
are displayed as a visual entity in the offset-traveltime domain: the abscissa shows the lateral micro-
phone coordinate re the array center (the ‘offset’), the ordinate the traveltime re the moment of pulse
generation. The picture clearly reveals the direct and reflected wave fronts. Note that, in order to get a picture
with highest temporal resolution, the shortest wavelet for the given amplitude spectrum is applied, i.e.,
the symmetric zero-phase wavelet that is obtained by deconvolution of the recorded data with the source
signal [7].

A logical follow-up of the successful application of array technology to acoustic wave fields is its application
to bending wave fields in elastic, solid structures in order to reveal their temporal and spatial properties in a
deterministic way. However, a fundamental difference between bending and acoustic waves is that bending
waves are highly dispersive and acoustic waves are largely non-dispersive. Due to the fact that the propagation
velocity of bending waves increases with frequency, an impulsive excitation signal broadens when
propagating. This means that the temporal resolution of the registration of a bending wave field strongly
deteriorates with traveltime. We propose a wave theory-based preprocessing step which removes dispersion
from bending waves, resulting in a representation highly similar to 2D acoustic waves. Next, the same analysis
methods as earlier derived for acoustic waves [5,6] can be applied.

Recently, a research project funded by the Dutch technology foundation STW has been started where the
proposed bending wave field analysis method will be used in several applications. At present, the bending wave
propagation in multi-actuator flat panel loudspeaker arrays for wave field synthesis is investigated; the
proposed dispersion removal operation is a useful tool in this context. Further applications are foreseen in
the analysis of vibrations in building constructions, machines, musical instruments and the shallow earth
subsurface.
Fig. 1. Multi-channel impulse response measured in a lecture room along a linear detector array. The direct sound wave and the first-order

reflections can easily be identified.
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2. Bending waves in an infinite plate

A point force acting on a homogeneous elastic plate generates a 2D bending wave field, as illustrated in
Fig. 2. The exact wave equation for the transversal displacement q of such a field cannot be given in closed
form. When the thickness h of the plate is assumed to be small in comparison with the bending wavelength,
shear displacements caused by shear forces may be neglected, which means that bending is described by pure
rotation. If the rotation angles j of vertical cross sections are sufficiently small such that tan(j)Ej, then the
following approximate wave equation for the displacement q in the space–time domain due to a point force
c(t) positioned at (xs, ys) can be derived [8, Chapter 3]:

r4q x; y; tð Þ þ
m00

B0
q2

qt2
q x; y; tð Þ ¼

1

B0
cðtÞdðx� xsÞdðy� ysÞ

¼ � s0ðtÞdðx� xsÞdðy� ysÞ, ð1aÞ

where m00 is the mass per unit area of the plate, given by rph with rp the density of the plate material, B0 its
bending stiffness per unit length, given by

B0 ¼
Eh3

12 1� m2ð Þ
, (1b)

E its Young modulus, m its Poisson constant and

r4 ¼
q2

qx2
þ

q2

qy2

� �2

. (1c)

In the space–frequency domain the bending wave equation reads

r4 � k4
b

� �
Q x; y;oð Þ ¼ �S0 oð Þdðx� xsÞdðy� ysÞ (2a)

or

r2 � k2
b

� �
r2 þ k2

b

� �
Q x; y;oð Þ ¼ �S0 oð Þdðx� xsÞdðy� ysÞ, (2b)

where S0(o) is the Fourier transform of s0(t).
The bending wavenumber is defined as

kb ¼
o
cb

(2c)

with cb being the propagation velocity for bending waves given by

cb ¼ cbðoÞ ¼
ffiffiffiffi
o
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eh2

12rp 1� m2ð Þ

4

s
¼ A

ffiffiffiffi
o
p

. (2d)

Eq. (2d) shows that the bending wave propagation velocity cb increases with the square root of frequency,
indicating that a bending wave field is dispersive. A is called the dispersion constant. Fig. 3 shows a graph of cb

as a function of frequency for a 30mm steel plate.
Fig. 2. Circular bending wave generated by a point force at (xs, ys) in an infinite plate.
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Fig. 3. Propagation velocity of bending waves as a function of frequency for a 30mm thick steel plate.
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Since the system is considered to be linear, Eq. (2b) can be decomposed into two sub-equations each having
its specific source term:

r2 � k2
b

� �
Q1 x; y;oð Þ ¼ �S1ðoÞdðx� xsÞdðy� ysÞ, (3a)

r2 þ k2
b

� �
Q2 x; y;oð Þ ¼ �S2ðoÞdðx� xsÞdðy� ysÞ, (3b)

such that its solution can be written as

Q x; y;oð Þ ¼ Q1 x; y;oð Þ þQ2 x; y;oð Þ, (4a)

where Q1(x, y, o) represents an evanescent wave which can be neglected for kbrb1 and

Q2 x; y;oð Þ ¼

ffiffiffiffiffiffiffiffi
2j

pkb

s
S1 oð Þ

e�jkbrffiffi
r
p

� �
for kbrb1 (4b)

with

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xsð Þ

2
þ y� ys

� �2q
. (4c)

Furthermore, it can be shown that with the substitution

SbðoÞ ¼ S1ðoÞ

ffiffiffiffiffiffiffiffi
2j

pkb

s
¼ S0ðoÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

32jpk5
b

s
(4d)

we can write

Q x; y;oð Þ ¼ SbðoÞ
e�jðo=cbðoÞÞrffiffi

r
p , (4e)

cb(o) being given by Eq. (2d).
Throughout this paper, simulations and measurements at an array of detector positions will be considered,

positioned along the x-axis. Hence, the response at the nth detector in (xn, 0) can be written as

Q xn; 0;oð Þ ¼ Q xn;oð Þ ¼ SbðoÞ
e�j o=cb oð Þð Þrnffiffiffiffi

rn
p (4f)

with

rn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � xsð Þ

2
þ y2

s

q
. (4g)
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Note that, due to the dispersive character of the bending wave field, the inverse Fourier transform q(xn, t) of
Eq. (4f) cannot be simply expressed in closed form.

The bending wave response of a bounded elastic plate due to a pulse emitted by a point force can be
interpreted as the superposition of the signals of an infinite series of image sources, obtained by mirroring the
primary source and its images in the boundaries. In the mirror image source space, source i at (xi, yi) has a
distance rni to the nth detector of the array positioned at (xn, 0) given by

rni ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn � xið Þ

2
þ y2

i

q
. (5a)

Since the propagation velocity of bending waves cb is dependent on frequency according to Eq. (2d), the
signal of each source cannot be related to a distinct traveltime.

In the space–time domain, the bending wave response at the nth detector can be written as a summation of
the contributions of the image sources, each ‘labeled’ by the distance rni:

q xn; tð Þ ¼
X

i

q rni; tð Þ. (5b)

Due to the frequency-dependent propagation velocity, however, the mirror image source signals vary in a
complex way and an analytic specification cannot simply be given. Therefore it is more relevant to write, in the
space–frequency domain

Q xn;oð Þ ¼
X

i

Q rni;oð Þ, (5c)

with, according to Eq. (4e),1

Q rni;oð Þ ¼
SbðoÞe�jkbrniffiffiffiffiffi

rni
p ¼

SbðoÞe�j o=cb oð Þð Þrniffiffiffiffiffi
rni
p . (5d)

In Section 4 a method is proposed to eliminate the dispersion from bending wave field data as described by
Eq. (5d). The resulting data then have the form

Q̂ rni;oð Þ ¼ ŜðoÞ
e�jðo=ĉÞrniffiffiffiffiffi

rni
p . (6a)

The notation ĉ will be used throughout this paper to indicate dispersion-free versions of variables. The
‘substitute’ propagation velocity ĉ is independent of frequency. The inverse Fourier transform of Eq. (6a)
reads

q̂ rni; tð Þ ¼
ŝ t� r=ĉ
� �

ffiffiffiffiffi
rni
p . (6b)

It represents a transversal wave that preserves its original time domain signature when propagating,
contrarily to the original bending wave.

3. Simulated array recordings

In this section, numerically simulated array recordings of bending wave responses in a 30mm thick steel
plate will be presented. Its bending wave propagation velocity cb is displayed as a function of frequency in
Fig. 3. The corresponding dispersion constant defined in Eq. (2d) is 6.76ms�0.5. The source emits a zero-
phase2 signal with bandwidth 20–5 kHz.
1In principle, each mirror image source has a different source spectrum depending on the absorption coefficients of the boundaries in

which the source has been mirrored. The source spectrum Sb(rni; o) of image source i is related to the primary source spectrum Sb(o) by

multiplication with a reflectivity spectrum Rb
niðoÞ: Sb rni;oð Þ ¼ Rb

ni oð ÞSb oð Þ; such that with Eq. (5d) Q rni;oð Þ ¼
Rb

ni
oð ÞSb oð Þe�j o=cb oð Þð Þrniffiffiffiffi

rni
p :

However, for simplicity Rb
niðoÞ has been chosen 1 for all simulations in this paper.

2A zero-phase pulse is a symmetric signal, the phase spectrum of which is zero for all frequency components. For a given amplitude

spectrum it has minimum length, and hence maximum resolution, in the time domain [7].
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Fig. 4. Configuration of source and detector array as used in the simulation of Fig. 5 (not to scale).

Fig. 5. Simulation of the bending wave response along a linear array on an unbounded steel plate (dispersion constant A ¼ 6.76ms�0.5).

A.J. Berkhout et al. / Journal of Sound and Vibration 300 (2007) 25–4230
3.1. Free field array recording

For the simulation of a bending wave in an infinite plate, using Eq. (4f), the source is positioned in front of
the center of a 2m long detector array at a distance of 3m (see Fig. 4).

In Fig. 5 the response is simulated at the detector array in the offset-traveltime domain. For each frequency
component of the source signal the arrival times are defined by a hyperbola, the curvature of which is
determined by the source-to-array distance and the propagation velocity. The propagation velocity is different
for each frequency according to Eq. (2d), causing dispersion such that the time resolution of the data is
increasingly worse for increasing source-to-array distance.

3.2. Bounded plate array recording

In Fig. 6, the responses along an array of detector positions are numerically simulated for a finite,
rectangular steel plate with length 2.5m and width 1.8m. The source is positioned in the center of the plate,
0.75m in front of a detector array covering the full plate width. The edges are taken free floating and fully
reflective. The configuration closely resembles that of the configuration used for the measurements discussed in
Section 5, shown in Fig. 12; the source was positioned at position s4 in that figure.3

It is seen that, as expected, a very poor time resolution is obtained, such that the different wave fronts
cannot be distinguished; effective wave field analysis is not possible in this situation. Our solution to this
3The configuration has been chosen such that the assumption that evanescent waves can be neglected—see Eq. (4b)—is satisfactorily

fulfilled.
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Fig. 6. Numerically simulated bending wave response for steel. Note the complex interference patterns due to boundary reflections.
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problem is to apply, before analysis, a convolution operator that transforms the bending waves into
dispersion-free waves. This operator is derived in the next section.

4. Dispersion removal from bending waves

4.1. Time-invariant convolution

We presume that we know the propagation velocity cb(o) of the medium as a function of frequency (‘the
model’). For the bending waves considered here the model is given by Eq. (2d).

In order to transfer the bending wave contribution Q(rni; o) of (image) source i to array detector n into a
dispersion-free wave Q̂(rni; o) we have to multiply it with a filter F(rni; o) such that

Q̂ rni;oð Þ ¼ F rni;oð ÞQ rni;oð Þ. (7a)

Using Eqs. (5d), (6a) we write

F rni;oð Þ ¼
Q̂ rni;oð Þ

Q rni;oð Þ
¼

Ŝ rni;oð Þ

Sb rni;oð Þ
ej ðo=cbÞ�ðo=ĉÞ
� �

rni . (7b)
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We do not want to modify the amplitude spectrum of the bending waves when removing the dispersion,
meaning that for each frequency component within the source signal bandwidth we choose Ŝ rni;oð Þ ¼

Sb rni;oð Þ.

F rni;oð Þ ¼ ejðo=cb�o=ĉÞrni . (7c)

Instead of rni, we can use any parameter that is unambiguously related to the source-to-detector distance as
a ‘label’ for F, Q and Q̂. Since the filtered result is a dispersion-free wave traveling between source and detector
with frequency-independent ‘substitute’ propagation velocity ĉ we can write

rni ¼ ĉtni, (7d)

and rewrite Eq. (7b) as

F tni;oð Þ ¼ ejo ðĉ=cbÞ�1ð Þtni ¼ ejo ðĉ=cbÞð Þtnie�jotni ¼ G tni;oð Þe�jotni , (7e)

now using traveltime tni as a label. It should be realized that, by introducing ĉ and Eq. (7d), we rescale the
‘real’ time domain t to a ‘substitute’ time domain t̂ where dispersion-free versions of bending waves propagate.
In this domain, tni is the traveltime between source i and receiver n.

The performance of filter F(tni; o) when applied to a bending wave according to Eq. (7a) is illustrated in
Fig. 7. For the numerical parameter values, the following rather arbitrary choice has been made: source-to-
receiver distance rni ¼ 5m, central source spectrum frequency fc ¼ 2.5 kHz, dispersion constant
A ¼ 6.76ms�0.5 and substitute velocity ĉ ¼ 1300m=s. Fig. 7(a) shows the amplitude spectrum and phase
spectrum of bending wave Q(tni; o) which represents the input data. Due to the dispersive character, the phase
spectrum of the input data is nonlinear. Fig. 7(b) shows the amplitude and phase spectra of the filter G(tni; o).
It is seen that the amplitude spectrum of G(tni; o) is flat within the bandwidth of the input data, leaving the
amplitude information of the input data unaffected. Its phase spectrum is the inverse of that of Q(tni; o).
Therefore, G(tni; o) is the complex conjugate of a ‘whitened’ version of the input data, denoted as Qw(tni; o).
Multiplication of Q(tni; o) with G(tni; o) leaves the amplitude spectrum of the input data unchanged and yields
a zero-phase spectrum. The result is a dispersion-free signal; see Fig. 7(c). Finally, by multiplication with the
phase factor e�jotni , a linear phase spectrum is assigned to the zero-phase signal corresponding with a time shift
from zero to the acoustic traveltime tni being 3.85ms in this example. Fig. 7(d) shows the amplitude and phase
spectra of the resulting dispersion-free version Q̂ tni;oð Þ of the input data.

Note that, after substitution of rni ¼ ĉtni, we can write Eq. (7a) in the time domain as a convolution:

q̂ tni; tð Þ ¼ f tni; tð Þ � q tni; tð Þ ¼ g tni; t� tnið Þ � q tni; tð Þ, (7f)

or, in full notation:

q̂ tni; t̂
� �

¼

Z þ1
�1

f tni; t̂� t
� �

q tni; tð Þdt

¼

Z þ1
�1

g tni; t̂� t� tni

� �
q tni; tð Þdt

¼

Z þ1
�1

qw tni; t� t̂þ tni

� �
q tni; tð Þdt. ð7gÞ

Note that q̂ tni; t̂
� �

, f(tni; t), g(tni; t) and q(tni; t) are the inverse Fourier transforms of Q̂ tni;oð Þ, F(tni; o), G(tni; o)
and Q(tni; o), respectively. Note that the dispersion-free wavelet q̂ is now written in the substitute time
domain. In addition to the frequency domain description in Fig. 7, the dispersion removal procedure in the
time domain is illustrated in Fig. 8, for the same numerical values.

Fig. 8(a) shows the dispersive bending wavelet in the time domain q(tni; t) representing the input data. Since,
as was seen in Figs. 7(a) and (b), the zero-phasing operator g(tni; t) has about the same bandwidth and an
inverse phase spectrum as compared to the input data, it is expected that it resembles a time-reversed version
of q(tni; t) and, hence, that the time-reversed version g(tni; �t) of the zero-phasing operator resembles the input
data q(tni; t) itself. This is confirmed by Fig. 8(b). We write

g tni;�tð Þ ¼ qw tni; tð Þ, (7h)
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Fig. 7. Illustration of the performance of the dispersion removal filter F ðtni;wÞ ¼ Gðtni;wÞe�jotni as specified in Eq. (7e). (a) Amplitude

spectrum (left) and phase spectrum (right) of bending wave Qðtni; oÞ, (b) amplitude spectrum (left) and phase spectrum (right) of zero-

phasing filter Gðtni; oÞ ¼ Q�wðtni; oÞ, (c) amplitude spectrum (left) and phase spectrum (right) of zero-phase result Gðtni; oÞQðtni; oÞ and
(d) amplitude spectrum (left) and phase spectrum (right) of the resulting substitute wave component Pðtni; oÞ ¼ F ðtni; oÞQðtni; oÞ.

A.J. Berkhout et al. / Journal of Sound and Vibration 300 (2007) 25–42 33
where qw(tni; t) is a ‘whitened’ version of q(tni; t). Fig. 8(c) shows the result of convolving input data q(tni; t)
with zero-phasing operator g(tni; t), which can also be interpreted as taking the inner product of the input
wavelet with a whitened version of itself. As expected, the result is a zero-phase pulse at substitute traveltime
t̂ ¼ 0. Fig. 8(d) shows the dispersion-free wavelet q̂ tni; t̂

� �
that results when the full convolution of Eq. (7g),
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Fig. 8. Illustration of the performance of the dispersion removal convolution as specified in Eq. (7g). (a) Bending wavelet qðtni; tÞ, (b) time-

reversed zero-phasing operator gðtni; �tÞ ¼ qwðtni; tÞ, (c) zero-phase result g(tni; t) * q(tni; t); * denotes convolution and (d) dispersion-free

wavelet.

A.J. Berkhout et al. / Journal of Sound and Vibration 300 (2007) 25–4234
including the time shift corresponding with the source-to-receiver distance, is applied. As expected, it is a zero-
phase wavelet positioned on its correct substitute traveltime position t̂ ¼ tni ¼ 3:85ms.

Since in processing practice always discrete values of t and t̂ are used, Eq. (7f) can also be written in
vector–matrix notation, for each detector array element n:

Q̂n ¼ FQn, (7i)

where column vector Qn contains the data points of input wavelet q(tni; t), the rows of matrix F contain, for
subsequent values of t̂, the shifted wavelets qw tni; t� t̂þ tni

� �
and column vector Q̂n contains the resulting

dispersion-free wavelet q̂ tni; t̂
� �

, as illustrated in Fig. 9(a).
A limitation for application of the dispersion removal procedure developed in this subsection is that the

source-receiver distance rni must be known. In the next subsection, a solution for this drawback will be given.

4.2. Time-variant convolution

In practice, we always deal with bounded plates where reflections generate a complex bending wave field
q(xn, t) with overlapping dispersive wavelets according to Eq. (5b). As an example, Fig. 10(a) shows one trace
of a simulated bending wave field in a steel plate (dispersion constant A ¼ 6.76ms�0.5) consisting of a direct
wavelet and two reflections, together with the amplitude spectrum of the direct wavelet (central frequency
2.5 kHz). The wavelets cannot be recognized individually. If, besides the model of Eq. (2d), the geometry of the
plate and the positions of source and receivers are exactly known, the positions of the mirror image sources
could be determined and for each relevant rni and tni an operator f(tni; t) could be calculated. As shown in
Fig. 10(b), convolution of dataset q(xn, t) with such a filter yields dispersion removal for the wavelet with
corresponding tni, in this case the direct wavelet, the amplitude spectrum of which remains unaffected. The
other wavelets still appear in dispersive form, until the moment that the dataset is processed with the wavelet
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Fig. 9. Matrix representation of the time-invariant (a) and the time-variant (b) dispersion removal convolution process.

A.J. Berkhout et al. / Journal of Sound and Vibration 300 (2007) 25–42 35
corresponding with their tni values. If after dispersion removal a wavelet is resolved from the other events in
the dataset as in Fig. 10(b), it could be isolated, removed from the dataset and stored at the proper position in
the substitute traveltime domain. This way, a dispersion-free dataset q̂ xn; t̂

� �
could be built up. However,

reflection density increases with traveltime such that wavelet isolation and removal is not possible for higher
order reflections and dispersion removal by time-invariant convolution will not work.

A better alternative here is dispersion removal by time-variant convolution. Then, beside the velocity model
only the global geometry of the plate has to be known such that, for the substitute velocity to be chosen, the
relevant region of tni-values can be determined. For a quasi-continuous distribution of tni-values in this region an
operator f(tni; t) is modeled and the convolution of each operator with the complete dataset q(xn; t) is calculated
according to Eqs. (7f, 7g). But now, instead of for all values of t̂, only the resulting value for t̂ ¼ tni is stored for
each operator f(tni; t). Hence, convolution of the dataset q(xn, t) with the operator modeled for a certain value of
tni contributes one data point of a dispersion-free dataset in the substitute traveltime domain according to

q̂ xn; t̂ ¼ tni

� �
¼

Z þ1
�1

f tni; tni � tð Þq xn; tð Þdt

¼

Z þ1
�1

g tni;�tð Þq xn; tð Þdt

¼

Z þ1
�1

qw tni; tð Þq xn; tð Þdt. ð8aÞ
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Fig. 10. (a) Direct bending wavelet and two reflections in steel (r ¼ [2,4,7]m, A ¼ 6,76m s�0.5) with the amplitude spectrum of the direct

wavelet only, (b) time-invariant convolution of the data set in (a) only one wavelet is dispersion-free; its amplitude spectrum is unaffected,

(c) time-variant convolution of the data set in (a) with arbitrarily chosen substitute velocity ĉ ¼ 1300m s�1: all wavelets are dispersion-free;

the amplitude spectrum (again shown for the direct wave only) has been changed and (d) as (c), only now the substitute velocity ĉ is chosen

such that the peak of the amplitude spectrum (right) is located at the same frequency as for the original data, here at fc ¼ 2.5 kHz.

A.J. Berkhout et al. / Journal of Sound and Vibration 300 (2007) 25–4236
It is seen that this time-variant convolution can also be interpreted as taking the inner product of the
complete dataset with a whitened version of the bending wavelet generated by a possible image source i. Only
if this image source is really present, providing a contribution to the dataset q(xn, t), the inner product will
have a significant value. The full dispersion-free dataset is obtained by summing these data points for all i:

q̂ xn; t̂
� �

¼
X

i

q̂ xn; t̂ ¼ tni

� �
. (8b)

Fig. 10(c) shows the result of this time-variant convolution procedure for the dataset of Fig. 10(a), where, as
before, substitute velocity ĉ has been chosen 1300m/s. The direct wavelet and the two reflections are now
represented by dispersion-free versions, positioned at substitute traveltimes corresponding with the positions
of their sources and the value of ĉ. However, the amplitude spectrum of the direct wavelet—and the reflections
as well—has now been strongly changed. In the appendix it will be explained that the time-variant convolution
described above introduces an asymmetric scaling in amplitude and frequency. Exact preservation of the
original signal spectrum is not possible. However, it is possible to let the convolved wavelet have the same
central frequency as the input data, and thus preserving the original spectrum by good approximation, if ĉ is
chosen equal to the propagation velocity of the central frequency component: ĉ ¼ A

ffiffiffiffiffiffi
oc
p

. The convolved data
with this choice of ĉ is shown in Fig. 10(d). In the following, this choice of ĉ will be made for all dispersion
removal operations.
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Also the time-variant dispersion removal operation can be elegantly represented in the vector–matrix
notation of Eq. (7i) for each detector array element n. Now, column vector Qn contains the complete input
dataset q(xn, t), the rows of matrix F contain, for subsequent values of , t̂ ¼ tni the wavelets qw tni ¼ t̂; t

� �
and

column vector Q̂n contains the resulting dispersion-free dataset q̂ xn; t̂
� �

, as illustrated in Fig. 9(b).

5. Dispersion removal results

5.1. Simulated array responses

In Section 3 (Fig. 6) the bending wave response in a rectangular steel plate was numerically simulated; the
result is displayed again in Fig. 11(a). Fig. 11(b) shows the same dataset after application of the time-variant
dispersion removal convolution procedure described in Section 4. The substitute propagation velocity has
been chosen according to ĉ ¼ A

ffiffiffiffiffiffi
oc
p

so that the central frequency of the dispersion-free wavelet spectrum is
the same as that of the original spectrum; cf. Fig. 10(d). Now, an increased temporal resolution is obtained,
such that the direct and reflected wave fronts can be individually distinguished.

5.2. Measured array responses

Measurements have been performed on a free-hanging steel plate with the same thickness and dimensions as
used in the simulations. Six source positions have been chosen as indicated in Fig. 12 which also specifies the
Fig. 11. Simulated bending wave field in a steel plate before (left) and after (right) dispersion removal.



Fig. 12. Measurement configuration of the steel plate with the detector array and the six source positions s1–s6.
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detector array position; the distance between the array elements was chosen 5 cm. The exciter was an impact
hammer (Brüel & Kjaer type 8202), generating a pulse signal with a bandwidth roughly similar to the one used
in the simulations. Since a hand-generated pulse is not repeatable, the source function was normalized by
deconvolving the measured data with the actual source signal measured with the hammer device. (The
measurements have been done in a reciprocal way: the plate was excited with the impact hammer at the
‘detector’ positions, whereas accelerometers were fixed at the ‘source’ positions. In the text, however, source
and detector positions are denoted as in Fig. 12 for compatibility with the other configurations discussed in
this paper.)

Fig. 13(a) shows an offset-traveltime representation for each source position separately. Even more than in
the simulations, the wave fronts interfere such strongly that they cannot be distinguished separately. Fig. 13(b)
shows the datasets after dispersion removal, displayed in the offset-(substitute) traveltime domain. Now,
several wave fronts can be identified. In Fig. 14(a) the simulated quasi-longitudinal response of source #1 is
shown, to be compared with the measured response after dispersion removal in Fig. 14(b). The similarity is
satisfactory.

6. Conclusions and future research

6.1. Conclusions

By applying a convolution algorithm, dispersion can be removed from bending wave datasets, such that a
dispersion-free version results, to which processing operations can be applied as developed for acoustic wave
field analysis. For the hypothetical situation that all image source positions are known in advance and well-
resolved, a time-invariant convolution operator can be used which leaves the amplitude spectra of the source
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Fig. 13. Unprocessed (a) and processed (b) measurements on a steel plate (configuration Fig. 12). Note the significant improvement in

resolution.
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Fig. 14. Comparison between numerical simulation (a) and processed measurement (b) for source position s1.
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signals unaffected. For the practical situation that the image source positions are not known and the image
source configuration has a high spatial density, a time-variant convolution operator has to be used which
affects the amplitude spectra of the source signals, since dispersion removal is now implicitly coupled with
frequency scaling.

The spectrum of the resulting dispersion-free waves can be optimized by choosing the substitute
propagation velocity value in the time-variant convolution operator equal to the bending wave velocity at the
central frequency of the original source spectrum. The proposed dispersion removal method has been
validated with simulated and measured datasets; the performance is satisfactory.
6.2. Future research

The dispersion removal method has to be further tested and optimized for application in practical
situations. The developed procedure can not only be applied to bending waves of which the propagation
velocity is proportional to the square root of frequency, but to all dispersive wave types of which the velocity
model is known. This has to be further evaluated.

Research has to be done to make the dispersion removal method adaptive, for application in situations
where the velocity model is not known.
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Appendix

In Fig. 10 it was seen that dispersion removal by time-variant convolution modifies the amplitude spectrum
of the dataset. The spectral changes—which were not intended when developing the dispersion removal
method—can be explained as follows.

From Eq. (8a) it follows that q̂ xn; t̂
� �

is the inverse Fourier transform of the product of Q(xn, o) and
F tni ¼ t̂;o
� �

, such that using Eq. (7e) we write

q̂ xn; t̂
� �

¼
1

2p

Z þ1
�1

Q xn;oð ÞF t̂;o
� �

ejot̂ do

¼
1

2p

Z þ1
�1

Q xn;oð Þejo ĉ=cbð Þt̂ do. ðA:1aÞ

To have the same amplitude spectrum as the original bending wave, the dispersion-free wave should just be
the inverse Fourier transform of Q(xn, o), which it apparently is not. Instead, it is the inverse Fourier
transform of a function Q0(xn, o0) such that

q̂ xn; t̂
� �

¼
1

2p

Z þ1
�1

Q0 xn;o0ð Þejo
0
t̂ do0. (A.1b)

Comparison of Eqs. (A.1a) and (A.1b), and substitution of Eq. (2d) yields

o0 ¼
ĉ

cb

o ¼
ĉ

A

ffiffiffiffi
o
p

(A.2a)

and hence

do0 ¼
ĉ

2A
ffiffiffiffi
o
p do. (A.2b)

This means that q̂ xn; t̂
� �

is the inverse Fourier transform of a version of Q(xn, o) that is asymmetrically
scaled in amplitude and frequency:

Q0 xn;o0ð Þ ¼
2A

ĉ

ffiffiffiffi
o
p

Q xn;oð Þ

¼ 2
A

ĉ

� �2

o0Q xn;
A

ĉ
o0

� �2
 !

¼ Q̂ xn;oð Þ. ðA:2cÞ

The amplitude scaling can be compensated by appropriate filtering if required. The frequency scaling,
however, cannot fully be corrected in a simple way. A way to approximately preserve the original source
spectrum is to choose the substitute velocity ĉ such that the central frequency is kept in place after dispersion
removal:

ĉ ¼ A
ffiffiffiffiffiffi
oc

p
¼ cB ocð Þ. (A-3)
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